Palmer Amaranth Risk Analysis in Iowa

Summer Seminar Series
Jacob Bruns, Geoff Converse, Leslie Decker, Marisa DeForest, Maggie Long, Park Mikels, Zoe Muehleip, Drew Roen
Advisors: Professor John Pauley and Dr. Clint Meyer
Outline

- History and biology of Palmer amaranth
- Palmer Project outreach
- Demographic model
- Geographic model
- Synthesis model
- Economic impact study
- Future work and conference
Project began in May of 2015

- Predictive analytics
- Qualitative, sociological research
- Educational outreach
- Curricular innovation

Agriculture makes up 33% of Iowa’s economy.
-Iowa Agricultural Statistics Bulletin, 2014
Biology of Palmer

- Closely related to waterhemp
 - Same genus
 - Similar appearance
- Dioecious
 - Develops herbicide resistance rapidly
- Grows 2-3 inches a day
 - 8 feet tall
- Germinates from May to September
- Prolific seed production
 - 500,000 - over 1 million
Awareness Campaign
Modeling Objectives

● What is the risk of Palmer infesting any particular area in Iowa?
● Three types of data
 ○ GIS Maps
 ○ County Data Information
 ○ Interviews
● Two characteristic maps
 ○ Demographic map
 ○ Geographic map
● Final synthesis of the two maps
 ○ Considers risk from both maps to create a final risk model
Predictions

- Higher risk in the southern counties
 - Less productive soil
- Higher risk near waterways
 - Increased animal traffic
- Higher risk near edge of state
 - Dispersal from neighboring states
Demographic Model

- **Characters**
 - Diverse Herbicide Programs
 - Ditch Maintenance
 - Owning Equipment
 - Cleanliness of Equipment
 - Community Collaboration
 - Add 1+ Crop
 - Awareness of Superweed

- **Attributes**
 - Average Expense
 - Primary Occupation
 - CRP Acres
 - Percent Owned
 - Average Farm Size
 - Average Income
 - Average Age
Demographic Model

- Information was gathered on relationships between characters and attributes
- Each character/attribute pair was given a score
 - Character/attribute potential risk score
- The characters were ranked based on greatest to least impact on mitigating Palmer infestations
Demographic Model

Spreadsheet for scores

- Top = Characters (Diverse herbicide program, ditch maintenance, etc.)
- Side = Attributes (Small farm, large farm, etc.)

Example with Attribute 1:

\[
S_{attribute} = c_1(r_1) + \ldots + c_i(r_i)
\]

where:
- \(r \) = Risk Score
- \(c \) = Character Rank
- \(S \) = Total Attribute Score

Example with Attribute 1:
\[
1.7(0.9) + 1.6(0.9) + 1.5(1.1) + 1.4(1.1) + 1.3(0.8) + 1.2(1.1) + 1.1(0.9) = 9.51
\]

Overall Attribute Rank = Total Attribute Score \(\div \) Neutral Attribute Score

- Neutral Attribute Score = 9.8
- From previous example: Overall Attribute Rank = 9.51/9.8 = 0.970
Demographic Model

- All county attribute data were collected from agcensus.usda.gov
- We ranked each attribute based on its potential to mitigate Palmer
- Each data point per county was given a rank as well, corresponding to the 0.6 - 1.4 scoring system

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Expense</td>
<td>1.7</td>
</tr>
<tr>
<td>Primary Occupation</td>
<td>1.6</td>
</tr>
<tr>
<td>CRP</td>
<td>1.5</td>
</tr>
<tr>
<td>Percent Owned</td>
<td>1.4</td>
</tr>
<tr>
<td>Average Farm Size</td>
<td>1.3</td>
</tr>
<tr>
<td>Average Income</td>
<td>1.2</td>
</tr>
<tr>
<td>Average Age</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Demographic Model

$$R_{\text{county}} = \frac{(r_1)(a_1)(c_1) + \ldots + (r_i)(a_i)(c_i)}{R_{\text{neutral}}}$$

- $r = \text{Risk Value}$
- $a = \text{Attribute Rank}$
- $c = \text{Attribute Weight}$

$R_{\text{county}} = \text{County Rank}$

Table

<table>
<thead>
<tr>
<th></th>
<th>Average Expense</th>
<th>Primary Occupation</th>
<th>CRP Acres</th>
<th>Percent Owned</th>
<th>Average Farm Size</th>
<th>Average Income</th>
<th>Average Age</th>
<th>Overall County Rank</th>
<th>County Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osceola County</td>
<td>0.9 1.7 1.6 1.5</td>
<td>0.6 0.7 0.8 0.6</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>Buena Vista County</td>
<td>1 1 1 1</td>
<td>0.7 0.7 0.8 0.7</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>Emmet County</td>
<td>1 1 1 1</td>
<td>0.8 0.8 0.8 0.8</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>Sioux County</td>
<td>0.6 1 1 1</td>
<td>0.8 0.8 0.8 0.8</td>
<td>1 1 1 1</td>
</tr>
</tbody>
</table>

$R = r \times a \times c$
Demographic Risk Map
Geographic Model

- Palmer risk based on natural conditions that cannot be changed
- 5 GIS maps from USDA Geospatial Data Gateway
 - Corn Suitability Rating (CSR2)
 - Average Maximum Temperature
 - Elevation
 - Average Yearly Rainfall
 - Average Wind Potential
- ≈ 325,000 data points

Geographic Model

- Quadratic Discriminant Analysis (QDA) is a supervised machine learning method commonly used in classification problems.
- We can “predict” which counties contain Palmer Amaranth based on the geographic factors.
Geographic Risk Map

\[Pr(palmer = 1 \mid X = x) \]
Final Risk Map Synthesis
Conclusion

- Accurate prediction on the edges of the state
- Accurate prediction on the rivers
- Noticeably less risk than anticipated in extreme south central
Model Advantages

- Adaptable
 - Easy to update maps and datasets

- Expandable
 - New maps can easily be implemented

- Interpretable
 - Straightforward visual representation

- High granularity
 - One point equivalent to 100 acres of land
Model Disadvantages

- Inconsistencies are expected
 - Large scale data are rarely completely accurate
 - Intrinsic to predictive analytics

- Specific Palmer locations are not readily available
 - Improved correlations come from more specific output data

- Difficult to test and validate
 - Uses a classification method, but doesn’t require a high prediction accuracy rate
 - Improved testing comes from more specific output data

- Processing power
Future Model Objectives

- Obtain more accurate data detailing Palmer’s location
 - Better testing, validation, and accuracy
 - Drone image processing
- Explore unsupervised learning techniques
 - K-Means Clustering
- More detailed effects of CRP
 - Improve accuracy of risk map
- Create a custom Palmer risk assessment webtool
 - Producers input geographic and demographic scenarios to assess land risk
Economic Impact

Objectives
- Establish a conservative model for potential yield lost due to Palmer amaranth infestation
- Relate plants per acre to total yield loss number then to per acre revenue loss
- Create a county case study that can be applied statewide and eventually to each individual acreage used in agriculture.
Economic Impact

Palmer and Yield Loss

Documented losses ranging from 11% to 91% & 17% to 68% yield losses in corn and soybeans, respectively

Figures to be used:
0.5 plants / m for Palmer infestation in corn

Conservative yield loss projection for minimally infested corn acreages = 11% yield loss

Rafael A. Massinga, Randall S. Currie, Michael J. Horak, and John Boyer Jr., 2001
Economic Impact

Macroeconomic Climate: Yield projections at historic highs, prices near 10YR lows

NASDAQ Markets, 10/18/17
Economic Impact

Assumption: Microeconomic farm finance is sufficiently homogeneous geographically to model IA impact using American Enterprise Institute (AEI) Heartland projections.

<table>
<thead>
<tr>
<th></th>
<th>Heartland</th>
<th>Heartland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est. Yield (bu/acre)</td>
<td>175</td>
<td>177</td>
</tr>
<tr>
<td>Base Price ($/bu.)</td>
<td>3.99</td>
<td>4.14</td>
</tr>
<tr>
<td>Regional Price Adjust. ($/bu.)</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Crop Revenue ($/acre)</td>
<td>701.75</td>
<td>736.32</td>
</tr>
<tr>
<td>Total Crop Nutrient Expense</td>
<td>$881</td>
<td>$917</td>
</tr>
<tr>
<td>Total Crop Protection Expense</td>
<td>$49.43</td>
<td>$53.42</td>
</tr>
<tr>
<td>Total Variable Costs</td>
<td>393</td>
<td>404</td>
</tr>
<tr>
<td>Contribution Margin (Revenue Less Variable Expenses)</td>
<td>309</td>
<td>332</td>
</tr>
<tr>
<td>Total Overheard (Fixed Expenses)</td>
<td>311.58</td>
<td>307.26</td>
</tr>
<tr>
<td>Earnings (losses) from Operations</td>
<td>-2.54</td>
<td>24.59</td>
</tr>
<tr>
<td>Estimated Government Payments ($/acre)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Earnings or (Losses)</td>
<td>-2.54</td>
<td>$24.59</td>
</tr>
</tbody>
</table>

AEI Crop Budget Estimates, Brent Gloy and David Widmar, 2017
Economic Impact

Breakdown of Expenses

- Variable Exp. + Non-Family Labor
- Land
- Non Cash Expense
- Price ($/bu.)

$/bushel

- $12.00
- $10.00
- $8.00
- $6.00
- $4.00
- $2.00
- $-

<table>
<thead>
<tr>
<th>Crop</th>
<th>Year</th>
<th>Region</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>2017</td>
<td>Heartland</td>
<td>$2.00</td>
</tr>
<tr>
<td>Corn</td>
<td>2018</td>
<td>Heartland</td>
<td>$2.00</td>
</tr>
<tr>
<td>SB</td>
<td>2017</td>
<td>Heartland</td>
<td>$8.00</td>
</tr>
<tr>
<td>SB</td>
<td>2018</td>
<td>Heartland</td>
<td>$8.00</td>
</tr>
<tr>
<td>Wht</td>
<td>'17</td>
<td>Heartland</td>
<td>$4.00</td>
</tr>
<tr>
<td>Wht</td>
<td>'18</td>
<td>Heartland</td>
<td>$4.00</td>
</tr>
</tbody>
</table>

AEI Crop Budget Estimates, Brent Gloy and David Widmar, 2017
Economic Impact

County Case Study: Washington County

Average Risk Value: 0.9414179
Average CSR2: 68

Projected Yield (bushels/acre) = 188.8
Est. 2017 Revenue/Acre = $50.00

Projected Yield after conservative reduction from Palmer amaranth infestation of 0.5 plants m$^{-1}$ = 168.03
Est. 2017 Loss/Acre = ($31.00)
Cumulative Economic Impact

Average CSR2: 68.4
Total 2017 Corn Production
Acres: 13,700,007

Current Price ($/Bushel): 3.48

Projected Average Yield after conservative reduction from Palmer amaranth infestation of 0.5 plants m\(^{-1}\) = 168.65
Est. Average Loss/Acre = ($41.78)
Est. Average Post Palmer Loss/Acre

= ($114.73)

Cumulated Yearly Revenue Lost due to Conservative Palmer Infestation: ($1,368,979,431.85)

Sassman & Burras, Iowa CSR2 Weighted Means by County, May 2017
Future Work on Economic Impact

- Isolate acres used for agricultural purposes from Synthesis Risk Map to find accumulated probability of potential yield loss
- Establish potential yield figures for soybean production as a function of CSR2 or other geographic characteristics
- Find projected yield figures for Palmer infestations less dense than those examined by Massinga et al., 2001
Academic Consultants

- Meaghan Anderson - ISU Extension
- Josh Bruett - Agronomist, BB&P Feed and Grain
- Carolyn Dallinger - Professor of Sociology, Simpson College
- Mike Gunderson - Agro Economist, Purdue University
- Dr. Bob Hartzler - ISU Extension
- Mark Johnson - ISU Extension
- Jason Norsworthy - University of Arkansas
- Aaron Sassman - Agronomist, ISU
- Dr. Brady Spangenberg - Market Intelligence and Analytics, BASF Chemical; Visiting Scholar, Simpson College
- Amy Tlach - Iowa Soybean Association
- Murphy Waggoner - Professor of Mathematics, Simpson College
Acknowledgements

- Simpson College
- Brady Spangenberg and BASF Corporation
- Dr. Albert H. & Greta A. Bryan
- Roy J. Carver Charitable Trust Foundation
 - Authors of the grant: Kelley Bradder, Jackie Brittingham, Chris Goodale, Michelle Johnson, Marilyn Leek, John Pauley, and Rick Spellerberg
- Archers Daniels Midland - American Global Food Processing Company
- Robert and Susan Fleming
- Ned and Mickey Burmeister
- Jay Simmons - President of Simpson College
- Kent Eaton - Academic Dean
- Bob Lane - Vice President of College Advancement
- Manda Gibson - Media Service Coordinator
- Sandy Condon - Administrative Assistant to Academic Dean
- Linda Sinclair - Administrative Assistant in Mary Berry
Palmer Amaranth Risk Analysis in Iowa

Summer Seminar Series
Jacob Bruns, Geoff Converse, Leslie Decker, Marisa DeForest, Maggie Long, Park Mikels, Zoe Muehleip, Drew Roen
Advisors: Professor John Pauley and Dr. Clint Meyer